1,714 research outputs found

    The dependence of stellar properties on initial cloud density

    Get PDF
    We investigate the dependence of stellar properties on the initial mean density of the molecular cloud in which stellar clusters form using radiation hydrodynamical simulations that resolve the opacity limit for fragmentation. We have simulated the formation of three star clusters from the gravitational collapse of molecular clouds whose densities vary by a factor of a hundred. As with previous calculations including radiative feedback, we find that the dependence of the characteristic stellar mass, McM_{\rm c}, on the initial mean density of the cloud, ρ\rho, is weaker than the dependence of the thermal Jeans mass. However, unlike previous calculations, which found no statistically significant variation in the median mass with density, we find a weak dependence approximately of the form Mcρ1/5M_{\rm c} \propto \rho^{-1/5}. The distributions of properties of multiple systems do not vary significantly between the calculations. We compare our results to the result of observational surveys of star-forming regions, and suggest that the similarities between the properties of our lowest density calculation and the nearby Taurus-Auriga region indicate that the apparent excess of solar-type stars observed may be due to the region's low density.Comment: Accepted for publication in MNRAS, 14 pages, 8 figure

    Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    Get PDF
    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003–2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought

    The Southern 2MASS AGN Survey: spectroscopic follow-up with 6dF

    Full text link
    The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J - Ks > 2 to Ks ~ 15.5 and a galactic latitude of |b|>30 deg. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (or ~27%) were securely classified as type 1 AGN, 20 as probable type 1s, and 57 as probable type 2 AGN. Most of them span the redshift range 0.05<z<0.5 and only 8 (or ~6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous galaxy survey. A small fraction of the type 1 AGN could have their optical colors reddened by optically thin dust with A_V<2 mag relative to optically selected QSOs. A handful show evidence for excess far-IR emission. The equivalent width (EW) and color distributions of the type 1 and 2 AGN are consistent with AGN unified models. In particular, the EW of the [OIII] emission line weakly correlates with optical--near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z~0.6 and provides incentive to extend the search to deeper near-IR surveys.Comment: 57 pages, 12 figures, 4 tables, to appear in vol.27/4 of Publications of the Astronomical Society of Australia (PASA

    IrrMapper: A Machine Learning Approach for High Resolution Mapping of Irrigated Agriculture Across the Western U.S.

    Get PDF
    High frequency and spatially explicit irrigated land maps are important for understanding the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution irrigation maps using Google Earth Engine for the years 1986–2018 for 11 western states within the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields, and over 500,000 km2 of uncultivated lands. We used 60,000 point samples from 28 years to extract Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over the seven years of available data and found good overall agreement between the 2832 county-level estimates (r2 = 0.90), and high agreement when estimates are aggregated to the state level (r2 = 0.94). We analyzed trends over the 33-year study period, finding an increase of 15% (15,000 km2) in irrigated area in our study region. We found notable decreases in irrigated area in developing urban areas and in the southern Central Valley of California and increases in the plains of eastern Colorado, the Columbia River Basin, the Snake River Plain, and northern California

    The nature and implications of uniformity in the hierarchical organization of nanomaterials

    Get PDF
    In this Perspective, we present a framework that defines how to understand and control material structure across length scales with inorganic nanoparticles. Three length scales, frequently discussed separately, are unified under the topic of hierarchical organization: atoms arranged into crystalline nanoparticles, ligands arranged on nanoparticle surfaces, and nanoparticles arranged into crystalline superlattices. Through this lens, we outline one potential pathway toward perfect colloidal matter that emphasizes the concept of uniformity. Uniformity is of both practical and functional importance, necessary to increase structural sophistication and realize the promise of nanostructured materials. Thus, we define the nature of nonuniformity at each length scale as a means to guide ongoing research efforts and highlight potential problems in the field. nanomaterial | uniformity | colloidal crystal | dispersity | hierarch
    corecore